19-09-20 Sizemore, Ann E., 2019¶
Sizemore, Ann E., Jennifer E. Phillips-Cremins, Robert Ghrist, and Danielle S. Bassett. "The importance of the whole: topological data analysis for the network neuroscientist." Network Neuroscience 3, no. 3 (2019): 656-673.
Original | [Mendeley]
ToC¶
- 00. Abstract
- 01. Intro
- 02. When should we use topological data analysis?
- 03. Pieces and parts of the simplicical complex
- Box 1. From data to simplicial complex
- 03.01. Chain groups and boudaries
- [03.02. Homological algebra][0302]
- [04. Homology from complex to complex: persistebt homology][04]
- [04.01. Filtrations][0401]
- [04.02. Persistent homology][0402]
- [04.03. Extracting topological feautres][0403]
- [05. Conclusion][05]
00. Abstract¶
01. Intro¶
01 ¶01¶
algebraic topology
01 ¶02¶
neteork topology
Figure 1¶
01 ¶03¶
persistent homology
01 ¶04¶
01 ¶05¶
02. When should we use topological data analysis?¶
02 ¶01¶
02 ¶02¶
03. Pieces and parts of the simplicical complex¶
03 ¶01¶
simplicial complex
unit of nodes is -simplex
-simplex
nodes
rule:
if is simplex in and , then
-skeleton (): collection of all cimplices w dim at most
-cycle: looped patterns of -simplices
03 ¶02¶
simplex dist
03 ¶03¶
face: subset of a simplex
e.g., if is 2-simplex, it contains 1-simplex ,
where is face of
Figure 2¶
03.01. Chain groups and boudaries¶
03.01 ¶01¶
cavities w/i simplicial complexes as akin to bubbles under water
Box 1. From data to simplicial complex¶
box1 ¶01¶
clique complex (flag complex) :
assign -simplex to each -clique
box1 ¶02¶
nerve complex
mat
box1 ¶03¶
Vietoris-Rips complex
Figure 3¶
03.01 ¶02¶
binary mat ()
first / zeroth chain groups (, ), 1- / 0-chains
03.01 ¶03¶
boudary operator
boundary
03.01 ¶04¶
let (the )
boundary map
binary mat
- boudary of -chain: sum of vertices
- boudary of -chain: sum of edges
- boudary of -chain: shell-forming sum of -simplices
chain group , boudary operator ,
03.01 ¶05¶
Figure 4¶
03.02. Homological algebra¶
03.02 ¶01¶
-cycle subspace:
-boudary subspace:
subspace of