03. Bifurcations

Contents

03.00. Introduciton

birfurcation

03.01. Saddle-Node Bifurcation

Fig.3.1.1

03.01.01. Graphical Conventions

bifurcation diagram

Fig.3.1.3

03.01.01.01. Terminology

fold bifurcation (aka, tuning-point bifurcation, blue sky bifurcation)

[Abraham, Shaw (1988)][1988_Shaw_Abraham]

Example 03.01.01.

linear stability analysis of fixed point:

Solution

Example 03.01.02.

Solution:

Fig.3.1.6

Fig.3.1.6-1

derivative:

and

,

03.01.02. Normal Forms

Taylor expansion

Fig.3.1.7

bifurcation at , Taylor's expansion

(⇐ is fixed point),

where ,

normal forms

Guckenheimier, Holmes (1983), Wiggins (1990)

03.02. Transcritical Bifurcation

transcritical bifurcation

Fig.3.2.1

Fig.3.2.2

Example 03.02.01.

show the first-order system

Solution:

Example 03.02.02.

analyze

near

Solution:

and

(Guckenheimer and Holmes (1983), Wiggins (1990), Manneville (1990))

03.03. Laser Threshold

Hanken (1983)

03.03.01. Physical Background

solid-state laser

03.03.02. Model

Milonmi and Eberly (1988)

Hanken (1983)

Fig.3.3.2

Fig.3.3.3

: num of photons

simulated emission

  • : num of excited atoms
  • : gain coef
  • : rate constant;
  • : lifetime of photon in laser

  • : rate at which atoms drop back to graund state

Substitute:

03.04. Pitchfork Bifurcation

Pitchfork bifurcation

symmetry

03.04.01. Supercritical Pitchfork Bifurcation

Fig.3.4.1

Fig.3.4.2

Example 03.04.01.

Fig.3.4.3

Fig.3.4.4

Example 03.04.02.

Fig.3.4.5

Plot potential for the system

Solution

03.04.02. Subcritical Pitchfork Bifurcation

Fig.3.4.6

Fig.3.4.7

03.04.03. Terminology

  • Supercritial pitchfork
    • aka, Forward bifurcation
    • soft/safe
  • Subcritical pitchfork
    • aka, Backward bifurcation
    • hard/dangerous

03.05. Overdamped Bead on a Rotating Hoop

Let

  • : angle ()

Fig.3.5.2

03.05.01. Analysis of the First-Order System

where ,

additional fixed points, if

introduce param ,

solve

Fig.3.5.6

03.05.02. Dimensional Analysis and Scaling

when valid to neglect the inertia term ?

dimensionless form (C.C. Lin and L.A. Segel (1988))

dimentionless time

,

Characteristic time scale

substitute for

(3)

needed

dumping is strong; mass is small

(3) becomes